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ABSTRACT 

This dissertation studies the structure of  the plane magnetohydrodynamic 

shock wave of a rarefied, fully-ionized plasma. Both the shock front and the magnetic 

field are assumed to be perpendicular to the flow direction. In the undisturbed region, 

the gas pressure (=nkT) can be comparable to, much smaller or much larger than the 

magnetic pressure (=B2/8.), and also the magnetohydrodynamic Mach number (M*) 

can be any value greater than unity. Since the plasma i s  so rarefied that the mean-free- 

path here cannot be considered as a relevant scale length for the shock thickness, instead 

the geometrical mean of the ion and electron Larmor radius i s  the appropriate one. 

Under these assumptions, the structure of large M* shock wave i s  solitary wave-like, 

and that of  the smaller M* shock waves can be either oscillatory or monotonic 

depending on the value of electrical resistivity. 



I. INTRODUCTION 

This dissertation studies the structure of magnetohydrodynamic shock waves 

i n  a rarefied, Fully ionized plasma with an external magnetic field, With particular interests 

i n  that the speed of propagation of the shock front i s  quite high and that the gas pressure 

i s  comparable to the magnetic pressure, the former i s  equivalent to a high Mach number in  

gasdynamics and the latter implies that neither the gas pressure, i .e. , the plasma temperature 

nor the magnetic field can be neglected. Since the plasma i s  very rarefied such that i t s  

ion-ion collision mean-free-path i s  much larger than the ion Larmor radius which, on the 

other hand, i s  much larger than the Debye shielding distance of the plasma. Moreover, the 

shock thickness to be found i s  of the order o f  a few geometrical mean of the ion and electron 

Larmor radius. Thus i t  can be assumed that the effect of viscosity and thermal conduction 

can be neglected because o f  the small value of the shock thickness. However, the plasma 

electrical resistivity, which signifies a friction between ions and electrons, i s  retained and 

behaves as the necessary dissipation mechanism i n  the continuum theory. For simplicity, the 

effect o f  charge separation and the self-consistent electric field are not considered in  the 

main investigation, but as a justification they are to be computed by a perturbation method 

i n  the discussion part of this study. Application o f  this dissertation can be made to the bow 

1-5 
shack formed by the interaction o f  the solar wind with the magnetosphere and can also 

be extended to the laboratory experiments on controlled-fusion. 

6-14 
Previous investigations on the structure o f  shock waves cannot satisfy 

the present model due to one or mare of the following reasons: 1. no magnetic field was 
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considered; 2. gas pressure was neglected or only a cold plasma was considered: 3. the 

shock thickness considered i s  of  the order of a few mean-free-path, which i s  too large to 

represent a shock wave here; and 4. the propagation speed of the shock front i s  limited 

to some small values. 

Though it i s  mentioned earlier some particular interests are that the 

propagation speed of  the shock front i s  quite high and that the gas pressure i s  comparable to 

the magnetic pressure, yet this analysis i s  so general that it covers any propagation speed 

of  the shock front and any finite ratio of the gas pressure to the magnetic pressure. 
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II. BASIC EQUATIONS 

With the mathematical model stated in  the Introduction, the problem 

becomes a stationary one i f  the y - z plane o f  a Cartesian coordinate system i s  chosen to be 

fixed with the shock front. Then the x-axis i s  the direction of flow velocity u, and the 

magnetic field B i s  specified in  the z-direction. Figure 1 shows the transition region o f  

the shock wave and the following table lists a l l  the physical parameters: 

Upstream Transition region Downstream 

U U U1 2 

P1 P p2 

Temperature T1 T T2 

Density 9 1  9 92 
B1 B B2 

Velocity 

Pressure 

Magnetic Field 

Current Density J 1=0 J J 2=0 

Here the upstream quantities are given constants. The downstream quantities are also constants 

but have to be determined from the classical method which was first investigated by de Hoffman 

and Teller and l a k r  by HeJfer . The quantities i n  the transition region are functions o f  x 

and wil l  be fully studied i n  this investigation. 

16 

No electric field i s  assumed i n  the stationary frame of reference, however, 
.w U P 1  17,18 , 0) occurs with the moving coordinates an apparent constant electric field E (0, - 

It i s  interesting to note that E = 7 - - i s  also a given constant as shown later, 
u1 B1 - u2 B2 
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although u2 and B2 individually are yet to be determined. 

Since a l l  physical parameters depend on the x-coordinate only, Maxwell's 

equation, the conservation equations for this problem, which are derived in  Appendix 1, can 

be written here as: 

d 
dx (2-2) - (PU) = 0 

du - dP 1 dB2 p .  --&- - -- - -  - 
dx 8n dx (2-3) 

Here the equation of state for ideal gas i s  used, i . e . ,  

In addition, the generalized Ohm's law (Appendix 11) i s  of the form 

= 0 

equation (2-6) gives the relation 
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which i s  mentioned earlier, since at  both upstream and downstream regions 

-54 
Here the temperature dependence of the electrical resistivity i s  taken as Q (T) 00 T 

20 
which was derived by Chapman and Cowling l 9  and 010s by Spitzer . 

It i s  further assumed that c, R, gei, and P al l  are constant i n  this 

analysis. 

Equations (2-2), (2-3) and (2-4) can be integrated at once, giving: 

yu = Mo = constant 

= P l U l  

- 4 2 u 2  
- 

2 

8R 
2 

p u  + p +  B = N = constant 

2 

8R 

2 
= p , u  +pl + 3- 

(2-7) 

2 B2L 
= P 2 u 2  + p 2 +  - 

8ll 
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2 - u 5 P t cEB = Q = constant 
2 - 9 7  q 

2 

2 
- u 2  5 p2 c E B ~  

-q- +“Mo - f  - 

Here k takes the value 5/3; Mo, N, and Q are integration constants and they can be 

evaluated by the given quantities at upstream. 

Equations (2-1), (2-5) through (2-9) are the basic equations describing the 

coupled relations among al l  the physical parameters in the transition region. 
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1 1 1 .  THE GOVERNING EQUATIONS IN TRANSITION REGION 

AND THEIR GENERAL PROPERTIES 

1 .  The Governing Equations i n  Transition Region 

The four algebraic equations [ (2-5), (2-7), (2-8) and (2-9) ] and two 

differential equations [ (2-1) and (2-6) ] are used to describe the behavior o f  a l l  the 

properties i n  the transition region. A cancellation o f  p, P , and T from the algebraic 

equations can be made and leaves an equation of B and u as follows: 

further, differentiating (3-1) with respect to x and eliminating B/d x through (2-1) gives 

(3-2) 
cE B)u-+- 1 d u  1 ( -  5 B u - c E )  J = O  (Q - 2u2 7 - 

&Ma dx cMo 2 

I 

Thus equations [2-6), (3-1) and (3-2) are the coupled system of only three 

dependent variables B, u, and J and are to be used as the governing equations i n  the 

transition region to determine the shock structure. 

2. Non-Dimensional Equations 

It i s  appropriote here to put the governing equations in  a non-dimensional 

form by introducing the following non -dimensional variables 
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Here a l l  symbols with subscript 1 denote the given physical quantities at upstream, and 

L i s  a properly chosen scale-length which i s  defined in  equation (3-3). 

Substituting these variables into equations (2-5), (3-1) and (3-2) yields 

The scale length L i s  defined as 

The physical meaning o f  L can be seen from equation (3-3) that it i s  the geometrical mean 

of the ion and electron Larmor radius. R, and A1 are the magnetic Reynolds number and 

the Alfven number defined as follows: 
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Now the non-dimensional governing equations wi l l  be of the following form as: 

3 (3-4) 

B 
(Qo - 2c2 - 4) f & 

A1 

+-( 7- 
A12 

Rmi 5 ~ , j  A 
B u - 1 ) J  = 0 (3 -5) 

3.  Characteristic Curves i n  b - b Phase Plane 

Before getting into the details of the characteristic curves it i s  necessary to 

consider the region o f  interest in  the $ - phase plane. Since only positive values of the 

flow velocity and the magnetic field are interesting in  the fast-shock problem, only the first 

quadrant of the 6 - fi phase plane need be investigated (see Fig. 2). This region i s  further 
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bounded by three straight lines, (1) on the left by the minimum possible flow velocity, this i s  

the value of flow velocity when both El and M go to infinity, by equation (A-3-6) 
1 

5 
4 3 

- 
_ _ _ I  - -  - ' for 

(2) on the right by = 1, beyond which no fast shock wave can exist; and (3) bounded below 

by B = 1, where a magnetohydrodynamic fast-shock i s  not possible. In the transition region, 

there is no upper l imit for B . Therefore, characteristic curves must l ie above B = 1 and 

be bounded by 6 = 

n 

A 4 

1 
on the left and by = 1 on the right. 

There are four characteristic curves i n  this region that ore important i n  this 

investigation, they are: 

A ' l  

a. The locus of the downstream singularity point ( u2 , B ) r  since 2 
Blu, = B u this curve i s  described by the equation Blul = 1. 

A A  
2 2  

b. The solution curve, in the u - B phase plane for a given upstream Mach 

number and Alfven number, i s  described by equation (3-4). 

c. The non-dimensional form of equation (2-1) i s  

A ,- 

- 'mi' 
dB = 
dx 
7 (3-7) 

dividing equation (3-7) by (3-5) gives 
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dB h - A: (46 - 2G2 -$/A; ) - -  
A 5 “ A  

dUh u ( T B u  - 1 )  
(3-8) 

d t  2 
when 

the locue of a l l  maximums o f  the solution curve i n  u - B phase plane i s  given by: 

= 0, since A1 # 0 and i s  always finite the characteristic curve describing 

A A  

A 
B 

Qo-2:2- 7 = 0 
A1 

(3 -9) 

“ A  
d. The fourth curve i s  that dB/du can only approach infinity since the 

A 4  2 
solution curve wil I never reach the curve ( B u = y) which describes the slope going to 

infinity. Again i t  i s  pointed out that ,* i s  finite. 

4. Definitions of Different Magnetohydrodynamic Shock Waves 

1‘ 

varies. When the Alfven 

As mentioned i n  the last section, for a given upstream Mach number M 
A 

dB 0 changes i t s  shape i f  the Alfven number A T= 1 
the curve 

number i s  such that curves (a) and (c) (see Fig. 3) are tangent to each other, then this 

Alfven number i s  defined as the crit ical Alfven number and i s  denoted by A,*. Thus as 

A, 7 A]* , these two curves wi l l  intersect each other and this i s  the strong Alfven case 

(Fig. 4); as A1 < AI*, these two curves do not intersect and this i s  the weak Alfven case 

(Fig. 5). 

Now, different magnetohydrodynamic shock waves can be defined as follows: 
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a) Critical magnetohydrodynamic shock wave. This i s  defined as the 

A A  A A  
downstream singularity point ( u2 I B2 ) falling on the tangent point o f  curves B u = 1 

A 

and --  dB - 0. Obviously this i s  only possible i n  the crit ical Alfven cose (Fig. 3). 
d$ 

b) Strong magnetohydrodynamic shock waves. This i s  the magnetohydrodynamic 

A "  
shock wave that has i t s  downstream singularity point ( u2 I B2 ) on the left side of the curve 

- -  d! - 0. In other words, the solution curve started from the upstream singularity point 

4 4  
du' 4 

( ul, B1 ) crossing and intersections the curve dB = 0 to reach the point ( v2, B2 ) 
du 

(Fig. 4). 

c) Weak magnetohydrodynamic shock wave. When the downstream singularity 

. l A  
point ( u  , B2 ) of a magnetohydrodynamic shock wave does not reach the curve 

dB 

du 
= 0, then it i s  defined to be a weak magnetohydrodynamic shock wave. This i s  only 

possible for the weak Alfven number case (Fig. 5). 

A b  
5. General Properties in  u - B Phase Plane 

There are o few general properties of this investigation which can be deduced from 

A "  
the characteristic curves in  the u - B plane. 

A \  

a) The slope of the solution curve can be found. In the u - B plane, as the 

solution curve crosses the curve -= dB 0, i t s  slope must change sign. By equation (3-7), 

the slope i s  negative on the right-hand side of the curve - dB = 0 . The negative slope may 

di? du 4 
d i  du 

come from two cases: (1) 7 L 0, but 
dx d$ dx 

h 

d$ 

7 0, and (2) de > 0, but 7 L 0. 

By the arguments of the existence of a shock wave 21' 22, only the second case can be realized. 

Similarly, on the left-hand side of that curve, the slope i s  positive, since it s t i l l  requires 
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dsh must also be negative. Therefore, it can be said that a weak x 6 c 0 hence 
dx 

* %  
magnetohydrodynamic shock wave always exhibits a monotonic character in  u - B phase plane, 

while a strong magnetohydrodynamic shock wave wil l  overshoot to a (relative) maximum point 

when crossing the curve 

gradually until i t  reaches i t s  downstream singularity point. 

A 

dB = 0, afterwards, both i t s  c and 6 values wil l  decrease 

d&? A A  

b) The curve --I- 3 @ or B u = 2/5 wi l l  never influence the solution du 
A 4  

curve, This i s  because the locus of the downstream singularity point, or the curve B u = 1, 

dc 
wi l l  never cross this curve. By equation (3-3, this curve comes orginally from - = 0, & 
thus - will never be zero on the entire solution curve owing to B u 7 - . d: 2 

$x 5 
c) Another interesting property i s  that the intersection point o f  the curve 

h 
dB a = 0 and B = 1 changes i t s  position due to different given upstream Mach numbers M 

Byequation (3-3, - dfi - - 0 means 

1 "  

dv  ̂

4 

Qo - 2G2 - -  = o  
A: 

Evaluating Qo by the given upstream quantities as 

(3 -9) 

(3-10) 

Substituting (3-10) into (3-9) yields 
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h 
When B = 1, the value of u can be solved as 

(3-1 1) 

Equation (3-1 1) means that the upstream Mach number M i s  the only factor to 
1 

determine the paint of intersection. In addition, MI must always be greater than unity in  

order to produce a shock wave. 

4 4  
6. General Properties in  u - J Phase Plane 

A h  
Since characteristic curves in  u - J phase plane are very diff icult to obtain, 

one can only catch some properties of the solution curve i n  this plane through i t s  behavior i n  
A h  n n 

u - B phase plane and equation (3-7)# the latter relates J and dB directly. 
dx 

For the case of weakmagnetohydrodynamic shock waves, it can be seen that the 

h 
solution curve i n  this plane must be U -shaped, i.e., the value o f  J decreases from the 

init ial zero until i t  reaches a (relative) minimum, then increases reaching i t s  final (zero again) 

value, while u decreases monotonically to i t s  downstream value c A 

2 '  

For the strong magnetohydrodynamic shock waves, one can see there i s  one more 

A n 
singular point where J = 0, and u i s  determined by the intersection of two curves, the 

solution curve or equation (3-4) and the curve 

o f  this paint, J wi l l  change rapidly from a large positive value, and equation (3-5) wi l l  be 

4 
dB 0 or equation (3-9). In the neighborhood a= 

4 

A 4  A 

undetermined there. In the neighborhood of this point, the values of B, up and x change very 

slowly in  comparison with the changes in  J thus through equations (3-5) and (3-6) one can find 
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du the approximate expressions for J and - respectively as follows: 
dx 

4 Bou0 - 1 
J z a  ( ;; - Jo) 4 2  

uO 

J z a  BoUo - 1 4 
( ;; - Jo) 4 2  

uO 

(3-12) 

(3-13) 

A A  A 4 
Here Bo, uo are the intersection point of equations (3-4) and (3-9), and xo i s  the point x 

in  physical space at which Bo and Go exist. 
n 

A " 
The complete solution curve in  the u - J plane can, therefore, be obtained by 

equations (3-12) and (3-13). 
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IV. ASYMPTOTIC BEHAVIOR AT SINGULARITIES 

In order to understand the behavior of the solution curves at either the upstream or 

the downstream singular point, it i s  appropriate to utilize an asymptotic analysis of the 

differential equations i n  the neighborhood of the singularities. 

1. At Upstream Singularity 

Since equations (3-5) and (3-6) were derived subject to a normalization by the 

given upstream quantities. They can be used here directly as follows: 

Now, let the values of i, .", and ? vary i n  the neighborhood of the upstream 

sittgularity point as: 

n 
B = l + B '  

u = l + u '  
h 

A 
J = J' (4-3) 

Here primed quantities denote the small increments (decrements i f  they are negative) i n  the 

variables. 
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Substituting (4-3) into equations (4-1) and (4-2) and retaining only first order 

terms of increments yields: 

(4-4) 

dJ'+ a ( ~ l + ~ l + u ' )  = o (4-5) dx 

Here ?/?, , was neglected, since it is essentially unity. 

Evaluating the value of do by the given upstream quantities yields 

1 3 1  1 
Q 0 = - + - -  2 M 1 2  + ' - A 1 2  2 

Thus equation (3-9) can be written as: 

Combining equations (4-4) and (4-6) gives: 

By the method of solving simultaneous linear differential equations, assume 

3; x B' = F; e 

= G~ 

J' = Hi .Fix 
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Substituting (4-8) into equations (4-5) and (4-7) and cancelling out the common factor yields: 

1 Rmi 
(- - 1 )  AiGi + - H. = 0 

M12 A12 ' 

aFi + a G i  + ( a + h i ) H i  = 0 

Now, by equation (3-7), Fi i s  related to Hi as follows: 

thus, equations (4-9) can be rewritten as 

a G i  + (a+> i  - a 

The non-trivial solutions of Gi and H i  i n  the homobeneous equations (4-1 1) 

require that the determinant of their coefficients equal to zero, i .e., 

(4-10) 

(4-1 1) 
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which can be expanded to 

or 

Solving for Xi gives 

Since the Alfven number Al i s  related to the Mach number M1 by the equation 

A12 = - M12 (4-13) 
1.2 

I f  wedivide the values of Mqch number into three regions each of which wil l  bear 

a special meaning to this investigation 

2 1.2 
a) M 1 > l + -  

Bl 

In this region, i f  the terms in  the square bracket under the square-root sign i n  (4-12) 

i s  rearranged by using ( 4-13 ), it gives 
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(4- 14) 

1.2 
therefore, as M12 > 1 + - , (4-14) i s  always positive. Two roots o f  (4-12) 

i n  this region must be of opposite signs, which signifies that the singularity point of this 

region i s  o saddle point. This turns out to be the necessary upstream condition for a 

magnetohydrodynamic shock. 

fi1 

2 1.2 b) 1 K M1 S 1 +  - 
B l  

In this region, (4-14) i s  always negative, then the singularity point can be of 

either one of the following two cases: i f  

X and F2 i n  (4-12) are of the same sign which signifies the singulority point in 

this case i s  a nodal-paint; and i f  

1 

a AI2( -- I 1) 

M12 

both and > are complex numbers. The singularity point, therefore, i s  a 

focal-paint. 
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However, the upstream Mach number cannot be within this region, a 

calculation of the downstream quantities shows this case i s  against the thermodynamic 

laws 21,22 

c) M12 < 1 

As proved in  Ill - 5 - (c), the upstream Mach number M1 must always be 

larger than unity. Thus this region does not hold far upstream either. 

In conclusion of this section, i t  can be said that the Mach number M1 at 

upstreom must fulf i l l  the following condition: 

1.2 M12 7 1 + - 
R1 

2. At Ddwnstream Singularity 

Following the same procedures as i n  section (1) for a t  upstream singularity, 

two roots i n  equation (4-12) here can be written as 

(4-15) 

1 
1 +  
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Similarly, the values of downstream Mach number M2 can also be divided ;nto three 

regions as follows: 

For M:s 1, while Rm2 and A are always positive numbers, the values under 2 

the square-root i n  (4-15) are always positive and larger than unity. X and X are, 

therefore, of opposite signs in  this region. Thus, i f  M2 4 1, the downstream singularity point 

i s  a saddle-point. 

In this region by the analysis in  the previous section, the singularity point can be 

either a nodal-point or a focal-point depending on whether the value under the square-root 

sign in  (4-15) i s  positive or negative. I f  positive, i t  i s  a nodal-point. Physically the 

significance of the nodal-point i s  monotonic shock wave behavior and that o f  the focal-point 

i s  oscillatory shock wave behavior. The dividing line of these zones which corresponds to the 

value under the square-root sign i n  equation (4-15) equals zero. Fig. 6 illustrates the 

phenomenon for the case where the Alfven number i s  equal to 1.2. Obviously, for other 

Alfven numbers similar curves can be plotted. 
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In this region, there i s  only a uniform transition, therefore, no shock wave 

would exist. 

In conclusion to  the present chapter, if a magnetohydrodynamic number 

M* is defined as 

M*2 = M2 
1.2 

1 + -  
I3 

(4-16) 

then, whenever M* > 1 ,  it  signifies an upstream condition, while M* 4 1, a downstream 

condition. The latter can further be divided into a saddle-region and a nodal- of - focal- 

region depending on whether M2 is larger or  smaller than unity. All this information can be 

summarized into a plot of M* versus R as in Fig, 7. 
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. V. THE STRUCTURES OF MAGNETOHYDRODYNAMIC SHOCK WAVES 

In chapters Ill and IV, the general properties o f  the solution curve i n  phase 

planes and i t s  behavior in  the neighborhood o f  the singularity points has been discussed. Now, 

i t  i s  the purpose of the present chapter to obtain the details of the solution curve in the physical 

space. 

Since the coupled differential equations (3-4), (3-5) and (3-6) are highly 

non-linear, only a numerical method can be used to obtain the solutions. As discussed earlier 

i n  this investigation, the structures o f  different magnetohydrodynamic shock waves are distinct 

one from another, thus a study o f  them separately seems necessary. 

1 ,  Strong Magnetohydrodynamic Shock Waves 

The characteristics of a strong magnetohydrodynamic shock wave are: (a) 

it is also strong Alfvenic, (b) i t s  solution curve i s  not monotonic, (c) both i t s  upstream and 

downstream singularity points are saddle-points, and (d) i t s  solution curve has to cross the 

curve - dB - - 0. 
du 

Since both the upstream and downstream singularities are saddle-points, 

numerical integration must be started from the neighborhood o f  these two singularities. As the 

integrations from both sides proceed, they would meet theoretically a t  the intersection o f  

equations (3-4) and (3-9).  However, they can only be approached as close as possible and 

never be reached owing to the l imit o f  numerital techniques. Thus, the approximate method 

described in  Ill - 6 wi l l  be used to connect them in  the neighborhood o f  this intersection point. 



25 

2. Weak Magnetohydrodynamic Shock Waves 

According to the analysis given previously, the structure of weak 

magnetohydrodynamic shock waves are of  two types, either one has a saddle-point as required 

for the upstream singularity, but the downstream singularities are quite different, one i s  

a nodal-point the other a focal -point. The saddle to nodal transition exhibited a monotonic 

structure, and the saddle to focal gave an oscillating character. The structure for both types 

are computed for the same given upstream quantities except for the electrical resistivity, these 

and the calculated downstream quantities are as follows: 

Temperature 

Magnetic field 

Flow Velocity 

Pressure 

Mach Number 

Alfven Number 

Magnetohydrodynamic 

Pressure ratio 

Scale length 

Electrical resistivity 

E lectrica I resistivity 

T 

6 

U 

P 

M 

A 

M" 

I3 

L 

Upstream 

lo5 OK 

24 Kilogauss 

7.36 x 1 O7 cm/sec 

1.38 x IO5 dynehm 2 

19.85 

1.4 

1.4 

0.006 

3 . 5 8 7 ~  10 cm 
-3 

Monotonic case 

1 0 - j ~  

Oscillated case 

Downstream 

7.2T1 

1.5 B 1  

0.667 u, 

10.6 pi 

4.92 

0.76 

0.75 

0.029 

5.36 1 0 - l ~  

5.36 x 
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The results of the monotonic case are tabulated in  Table I I  and plotted i n  

Figs. 10 and 11, and those of the oscillatory case i n  Table I l l  and Figs. 12 through 14. The 

situation here i s  very similar to charging a condenser through a R-L-C circuit, where as the 

resistance i s  small it gives an oscillatory results, otherwise it i s  monotonic. 
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VI. DISCUSSION AND CONCLUSION 

1. Discussion 

For the model proposed in  the introduction and formulated i n  chapter II, the 

structure of either strong or weak magnetohydrodynamic shocks can be obtained i n  the 

investigation. It i s  further found that the profile of magnetic field o f  a strong shock i s  

quite different from that of a weak shock, the magnetic field in the strong shock i s  of the 

kind of a solitary wave-like while that in  the weak shock i s  monotonically increasing to or 

through an oscillating transition and then reaching to the downstream value. However, the 

variations o f  other parameters, e.g., flow velocity, pressure, etc., are s t i l l  i n  a monotonic 

manner as those of the weak shock. 

As a justification to the assumption that the effect of charge separation i s  

negligible, a calculation of it and the corresponding electrical field has been made by using 

equations (A-1-2), (A-1-6), (3-4), (3-5) and (3-6) and plotted in Figs. 15 and 16. The 

results are very interesting. For the strong shock wave case, in  front of the singularity, the 

magnetic effect dominates while at the back o f  the fluid properties dominate thus the self- 

consistent field makes a sharp change there. As for the weak shock wave case, the change 

of the charge separation as well as the electric field i s  very smooth and they are small i n  

comparison with the other terms indeed. 

A further work along this investigation can be achieved by inclusion of both 

viscous effect and thermal conduction. These terms wi l l  not only justify the present work i n  

the experimental controlled-fusion case where the geometrical mean of the Larmor radius o f  
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two species i s  not very small i n  comparison with the mean-free-path, but also remove the 

curve 7 = 0 where a singular point present. However, one more differential equation 

wi l l  be added thus o whole new analysis should be involved and cannot be considered as an 

extension to the present investigation. 

de 

du 

2. Conclusion 

It i s  now appropriate to conclude this investigation by giving the following 

important points: 

a) The structure of magnetohydrodynamic shock woves can be found for any 

given upstream conditions with this model, The structures, however, ore different i f  the 

downstream singularity point falls in  the different regimes defined i n  chapter IV. 

b) The structure of a l l  strong magnetohydrodynamic shock waves i s  similar 

in  shape; while that o f  weak shocks can be o f  two different shapes, e.g., a monotonic and 

on oscillatory shape, as to determine which i s  the shape of a specific model, a simp1.e 

calculation as derived in IV-1 can be used. 

c) The magnetohydrodynamic shock wave i s  strong or weak depending upon 

both Mach number and Alfven numbers at upstream. Therefore, there i s  no single number which 

can be used to separate the strong and weak shock waves. Instead there i s  a curve i n  B1 - MI 

plane (Fig. 17) which separates these two regions. 

d) As a justification o f  the assumption, the mean-free-path and the geometrical 

mean o f  the electron and ion Larmor radius were calculated for the two cases considered in  

chapter V. The calculated values are as follows: 
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Mean-free-path 

Larmor radius 

Solar Wind Model 

4.8 x cm 0.31 cm 

2 . 5 6 ~  10 cm 

Control led-fusion model 

3.587 x lom3 cm 6 

e) Unlike i n  the neutral gas, whose shock thickness i s  understood of the 

order of a few mean-free-paths, here it i s  shown that the thickness of a magnetohydrodynamic 

shock can be much smaller than a mean-free-path. 

f) The shock thickness o f  the solar wind case found in  this investigation 

i s  of the order of 50 km. This result agrees quite well with the observed values although a 

smaller electric resistivity was included i n  this work. 
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TABLE I 

Numerical Solution for Strong Shack Wave 

A 
X 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 .o 

1.1 

1.2 

1.25 

1.26 

1.27 

1.28 

1.29 

1.3 

1.305 

A 
B 

1.002 

1 .0005 

1.001 1 

1.0025 

1 .oo% 
1.0125 

1.0279 

1.0624 

1.1296 

1.3137 

A 
U 

0.99999 

0.99999 

0.99998 

0.99997 

0.99994 

0.99987 

0.99971 

0.99934 

0.99843 

0.9960 1 

n 
J 

-0.96~ 1 0-4 

-0.2 1 bx 1 o - ~  

-0.4799~ 1 om3 

-0.1073x10-2 

- 0 . 2 3 9 8 ~ 1 0 ~ ~  

- 0 . 5 3 6 2 ~ 1 0 ~ ~  

-0.1199X10-1 

-0.2683~ 1 0-1 

1 -0.60 18x 10- 

-0.13672 

A 
P 

1,000 

1 .ooo 

1 .ooo 

1 . 0000 

1 .om1 
1 .0003 

1.0009 

1.0032 

1.0133 

1.0609 

1.7194 0.98839 -0.3278 1.3053 

2.7726 

3.9445 

4.2819 

4.6698 

5.1207 

5.6538 

6.3048 

6.6997 

0 * 95548 

0.89535 

0.87299 

0.84415 

0.80592 

0.75284 

0.671 17 

0.604 18 

-0.9167 2.8468 

-1.6845 6.3088 

- 1 .9290 7 7223 

-2.2282 0.6354 

-2.6076 12.329 

-3.1197 16 3 9  

-3.91 12 23.513 

-4.5922 30.397 
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1.31 

1.32 

1.33 

1.34 

1.35 

1.4 

1.45 

1.5 

1.6 

1.7 

1.8 

6.9273 

7.0625 

6.9417 

6.4015 

5.9170 

4.4688 

3.9679 

3.804 

3.7338 

3.7265 

3.7258 

0.54808 

0.47529 

0.41 924 

0.351 05 

0.32233 

0.2794 

0.27147 

0.26935 

0.2685 

0.26842 

0.26841 

-5.2027 

0. 

2.9198 

2.7694 

2.3984 

0.8830 

0.2917 

0.0946 

0.0097 

0.0010 

0.0001 

37.164 

47.782 

58.470 

75.843 

85.603 

105.29 

110.14 

11 1.55 

112.13 

112.19 

112.20 
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TABLE II 

Numerical Solution for Weak Shock Wave - Monotonic Case 

x^x 

0.1 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

3.6 

3.7 

3 .a 
3.85 

3.9 

3.95 

4 

4.05 

4.1 

4.15 

4.2 

4.3 

A 

B 

1.0001 

1.0002 

1.0006 

1.0015 

1.0037 

1 .OO91 

1.0225 

1 .058a 

1.0733 

1.0940 

1.1264 

1.1517 

1.1891 

1.25 

1.3523 

1 A 5 1  

1.5013 

1 ,5045 

1.5046 

1.5046 

A 
U 

0.99994 

0.99987 

0.99969 

0.99924 

0.99811 

0.99534 

0.9884 

0.96893 

0.96088 

0.94924 

0.93033 

0.91519 

0. 89199 

0.85236 

0.78094 

0.69578 

0.66728 

0.66475 

0.66462 

0.66461 

A 
J x  10 

-.o .0006 

-0.0012 

-0.003 

-0.0073 

-0.0181 

-0.0444 

-0.11 14 

-0.3385 

-0.4617 

-0.6803 

-1.1505 

-1.6318 

-2.5242 

-4.2788 

-6.7034 

-4.2169 

-0.51 58 

-0.0284 

-0 e 001 2 

-0.000 

4 
P 

1 .mol 
1 .0002 

1 .0005 

1.0014 

.0039 

.0123 

.046a 

.2366 

1.3506 

1 .5476 

1.9391 

2 ~ 3074 

2.9490 

4.2082 

6.7481 

9.6906 

10.523 

10.591 

10.594 

10.595 
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TABLE I l l  

Numerical Solution for Weak Shock Wave - Oscillatory Case 

x x lo-’ 
1 

2 

3 

4 

4.2 

4.4 

4.6 

4.8 

5 

5.2 

5.4 

5.6 

5.8 

6 

6.2 

6.4 

6.6 

6.8 

7 

B 

1 .0005 

1 .0024 

1.0121 

1.0627 

1.0912 

1.1403 

1.2359 

1.4313 

1 .6522 

1.4978 

1.3808 

1 .4250 

1 .5550 

1 .5558 

1.4612 

1 A 0 7  

1.5153 

1.5440 

1 .4965 

U 

0,99975 

0.99875 

0.99379 

0.96680 

0.95079 

0.92207 

0.86175 

0.72193 

0.54454 

0.67006 

0.76003 

0.72673 

0.62409 

0.62349 

0.69885 

0.70699 

0.65607 

0.6330 

0.67105 

J x  10 

4.0022 

-0.0106 

-0.0525 

-0.3042 

-0.4920 

-0.8934 

- 1 ~ 8282 

-3.5313 

-0.4785 

2.6922 

0.41 14 

- 1 .4753 

-1.4503 

1.2629 

0. a545 

-0.5262 

-0.9451 

0.3049 

0.6734 

P 

1.0004 

1 .0024 

1.0184 

1 .2649 

1.5193 

2.1346 

3.8951 

8.8395 

11.825 

10.447 

7.5051 

8.6763 

11.505 

11.516 

9.5947 

9.3343 

10.815 

11.336 

10.420 



36 

7.2 

7.4 

7.6 

7.8 

8 

8.2 

8.4 

8.6 

8.8 

9 

9.2 

9.4 

9.6 

9.8 

10 

1 1  

12 

13 

14 

15 

20 

25 

1.4731 

1.5012 

1 ,5269 

1.5087 

1.4884 

1 .4978 

1.5152 

1.5109 

1 .4976 

1.4986 

1 .5087 

1.5099 

1.5024 

1.5005 

1.5056 

1.5064 

1 .5052 

1 .5045 

1.5044 

1.5046 

1.5046 

1.5046 

0.68956 

0.66734 

0.64681 

0.66134 

0.67745 

0.67004 

0.65619 

0.65959 

0.67019 

0.66942 

0.6614 

0.66058 

0.66642 

0.66792 

0.66387 

0.663 22 

0.664 1 8 

0.66474 

0.66476 

0.66465 

0.66462 

0.66462 

-0.0876 

-0.5355 

-0.0362 

0.3952 

-0.07753 

-0.2714 

-0.1156 

0.1900 

0.1082 

-0.1179 

-0.1048 

0.0729 

0.087 

-0.0835 

-0.073 

-0.0044 

0.0142 

0.0071 

-0.00007 

-0.0016 

-0,0000 1 

0 

9.8821 

10.521 

11.038 

10.681 

10.240 

10.448 

10.812 

1 0.726 

10.444 

10.465 

10.679 

10.7 

10.546 
N 

10.506 

10.614 

10.632 

10.606 

10.592 

10.591 

10.594 

110.596 

10.596 
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Appendix I Derivation o f  Basic Equations 

1. Maxwell equations 

For a medium i n  steady-stqte, the Maxwell equations can be written as 

3 4n f 
V x B  = c 
V x E  = 0 

4 

v . 3 =  0 

v .  E = 4 n e ( n e - n i )  

Here the permeablility i s  taken as unity and neglected in the equations. 

For the model i n  this investigation, we have the following assumptions (cf. chapter I )  

- e *  B = kB 

A h  A 
Here i ,  i, and k denote the unit vectors along x, y, and z direction respectively. 

Therefore, the equations can be summarized as: 

(A-1-1) 
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and - =  dEx h e  (ni - ne 
dx 

(A- 1-2) 

2. Equations of conservations 

The conservation equations for a system which has no viscosity, thermal conductivity 

and body force can be written as 

(A- 1-3) 

For the steady-state case with each and every parameter varying only along the 

x direction, we have 

D d 
Dt dx 
- = u- 

and that 

Here Cp - Cv = R 
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Thus equations (A-1-2) can be written as follows 

d ( P u )  = 0 
dx 

du - db 1 dB2 
P u r -  - -  dx -&r dx 

f u - (  d 2  ) - + - (  d P )  + - d B = O  cE 
d x 7  ) - 1  d x p  4~ dx 

(A- 1 -4) 

Equations (A-1-1) and (A-1-4) are the basic equations (2-1) through (2-4) in chapter II, 
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Appendix I I .  Derivation of the Generalized Ohm's Law 

The equations of motion for each species, i .e., electron and ion, can be 

written as Follows; 

+ - . +  
4 V X B  3 3  

) - ne2e2 "@'e ~t Dve =- V pe - nee(E + (V, - V i  ) (A-2-1) 

Multiplying (A-2-1) and (A-2-2) by e and e respectively yields: 
"'e mi 

Subtracting (A-2-4) from (A-2-3) and neglecting terms of i n  comparison 
mi 

to unity yields 

-w D " i  
t e V i  7 D ne - - -  D 3  e q  - 

Dt e Dt 

- 2 .  

(A-2-5) 

where 

-. - ? +  
J = e ( niVi -neve) 
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By assuming ne = ni = n , the y-component of (A-2-5) i s  of the form 

This i s  basic equation (2-6). 

By introducing 

ne = ( I +  d ) n  

n i  = ( l -  5 ) n  

ui = ( 1 +  6 )  u 

u, = ( 1 - 6 )  u 

n - ne ne + n i  - where - -  8 n=r 

The x - component of (A-2-5) can be written as follows 

(A-2-6) 

.JB 
1 
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Appendix 111. Stationary Solutions 

The stationary solution (The Rankine-Hugoniot relation) of the physical 

properties at downstream i s  obtained here as a function of given physical quantities at  

upstream. These results not only give some insight about their variation as influenced by 

different given upstream conditions, but also are needed to begin obtaining solutions of the 

properties in  the transition region. 

In either upstream or downstream, the flow i s  uniform which signifies that 

du 

dx 
-= 0 

and dB= 0 
dx 

The last relation further implies that 

J = O  

Thus Equation (2-6) yields 

From (2-3, (2-8) and (2-9) eliminating p2 and p2 gives 

(A-3-1) 

(A-3-2) 
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Substituting (A-3-1) into (A-3-2) and rearranging yields 

.-.A 

2 1  1 CAEL = u23- 5 N + - Q ~ ~ + -  
4 Mo 2 8 -  

(A-3 -3) 

inserting &, N a n d  Q by Pl,  ul, pl, and B1, there follows that 

u2 = u1 , i s  a solution of (A-3-3) . Factoring off ( u2 - ul), there remains a quadratic 

equation for u2' 

5N Q 5 N  (A-3-4) 

h 
Introducing u2, the downstream to upstream velocity ratio; Mi, the upstream 

sonic Mach number; and R1, the gas pressure to magnetic pressure ratio as 

u2 u2 = - 
u1 

M1= 2 u 2 / - -  5 p1 
1 3 P, 

B12 
and R1 = P1 

Then (3-4) becomes 

2 - Klu1 - K 2  = 0 
2 

1 ( l + g )  1 3  
K 1 =  -+-  4M12 1 

Where 

(A-3-5) 
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The solution of u that i s  positive i s  
2 

(A-3 -6) 

Recalling that u2 i n  the pure gas-dynamic shocks i s  

A r 3  
u 2 = - i i : + -  4 M12 

Therefore, the velocity ratio of a magnetohydrodynamic shock i s  always greater 

than that of the pure gas-dynamic case, for the same given upstream Mach number. 

Al l  other physical properties at  downstream can also be derived as functions of 

R1 and M1 from (2-6) through (2-9) and (A-3-6), they are 

A P 5 M 2  4 1 1 
p2 - - 2= + ( 1 - u 2 ) + l + i i l ( l -  - 1  $2 

P1 

u2 
M2 = .Ti- M1 

2 

(A-3-7) 

(A-3-8) 

(A-3-9) 

(A-3- 10) 

(A-3-1 1) 

Equations (A-3-6) through (A-3-1 1) were calculated for various I? 1 and M1 values 

and plotted i n  Figures (A-3-1) through (A-3-4). 
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Fig. 3. Typical critical MHD shozk wave case, ( 6 2 , ; ~ )  i s  the point 
of tangent of the curves BU^=l and d'h/dC=O. 
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Fig. 4. Typical strong MHD shockFave case, ( a z , i z )  is always 
on the left of the curve dB/dO = 0. 

I 
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Fig. 4. Typical strong MHD shockFave case, ( a z , i z )  is always 
on the left of the curve dB/dO = 0. 



Fig. 5.  Typical weak MHD shock wave case, (G, , $ 2 )  i s  always 
on the right of the curve &/&I = 0. 
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Fig. 6. Dividing line of oscillatory and monotonic regions of 
weak MHD shock waves for 4 '1 .2.  
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Fig. 17. Different regions of Alfvkn numbers in M, - p,plane. 
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Fig. A:3.2. Downstream pressure curves. 
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